home *** CD-ROM | disk | FTP | other *** search
- à 8.2è LaPlace Transform Solution ç Second Order Equations
- èèè
-
- äè Solve ê ïitial value problem via LaPlace transforms
-
- â èèForèy» + 3y = 2 ;èy(0) = -3 .èTakïg ê LaPlace
- transform ç this differential equation yields [Y = ÿ{y}]
- èsY + 3 + 3Y = 2/s.èRearrangïg (s+3)Y = (2-3s)/sèor
- Y = (2-3s)/[s(s+3]èUsïg partial fraction decomposition
- yieldsèY = 2/3 1/sè-è11/3 1/(s+3).èUsïg ê table ë do
- ê ïverse transform givesèy = 2/3 - 11/3 eúÄ▐ as ê
- specific solution ç ê ïitial value problem.
-
- éSè The LAPLACE TRANSFORM can be used ë directly solve an
- Initial Value Problem which has a lïear, constant coeffi-
- cient differential equation.èThis is due ë ê transform
- property ç ê derivative function ç order n.
-
- ÿ{fÑⁿª(t)} = sⁿÿ{f(t)} - sⁿúîf(0) - ∙∙∙
- èèèèèèèèèèèè- sfÑⁿú²ª(0) - fÑⁿúîª(0)
-
- As is seen, ê n-1 ïitial conditions are embedded ï ê
- transform.èThis is different from ê usual technique for
- solvïg ïitial value problems ç first fïdïg a GENERAL
- SOLUTION ç ê differential equation å ên substitutïg
- ê ïitial ïdependent variable ïë ê general solution
- å its derivatives å ên solvïg for ê n arbitrary
- constants.
-
- èèPart ç ê ease ç ê LaPlace transform technique is ë
- use a table ç tranforms.èThe followïg table should be
- copied for use ï ê problems ç this å ê next section.
-
- èèèèèèèèèè1
- 1.èèèÿ{ 1 }è=è───
- èèèèèèèèèès
-
- èèèèèèèèèè n!
- 2.èèèÿ{ tⁿ } =è──────
- èèèèèèèèèèsⁿóî
-
- èèèèèèèèèè 1
- 3.èèèÿ{ e╜▐ } = ─────
- èèèèèèèèèès-a
-
- èèèèèèèèèèèès
- 4.èèèÿ{cos[at]} = ───────
- èèèèèèèèèèèsì+aì
-
- èèèèèèèèèèèèa
- 5. ÿ{sï[at]} = ───────
- èèèèèèèèèèèsì+aì
-
- èèèèèèèèèèèè s
- 6. ÿ{cosh[at]} = ───────
- èèèèèèèèèèè sì-aì
-
- èèèèèèèèèèèè a
- 7. ÿ{sïh[at]} = ───────
- èèèèèèèèèèè sì-aì
-
- èèèèèèèèèèèèèès-a
- 8. ÿ{e╜▐cos[bt]} = ───────────
- èèèèèèèèèèèè (s-a)ì+bì
-
- èèèèèèèèèèèèèè b
- 9. ÿ{e╜▐sï[bt]} = ───────────
- èèèèèèèèèèèè (s-a)ì+bì
-
-
- 10. ÿ{fÑⁿª(t)} = sⁿÿ{f(t)} - sⁿúîf(0) - ∙∙∙
- èèèèèèèèèèèè- sfÑⁿú²ª(0) - fÑⁿúîª(0)
-
-
- 11.è ÿ{ C¬f¬(t) + C½f½(t) } = C¬ÿ{ f¬(t) } + C½ÿ{ f½(t) }
-
- èè The basic technique is ê usual transform process
- 1) Transform ê problem ë a different but related
- variable
- 2) Solve ê transformed problem ï terms ç ê
- related variable.
- 3) Transform back ë ê origïal variable ë get ê
- solution ë ê origïal problem.
-
- èèThese steps will be illustrated ï solvïg ê ïitial
- value problem
-
- y»» - yè=è0
- y(0)è= 3
- y»(0) = 2
-
-
- 1)èèTake ê LaPlace transform ç ê entire differential
- equation å use ê DERIVATIVE property å ê LINEARITY
- property
-
- ÿ{ y»» - y }è=èÿ{ 0 }
-
- By lïearity
-
- ÿ{ y»» } - ÿ{ y }è=è0
-
- By ê derivative property
-
- sìÿ{ y }è- sy(0)è-èy»(0)è-èÿ{ y }è=è0
-
- Substitutïg for ê ïitial values å settïg Y = ÿ{y}
-
- sìYè-è3sè-è2è- Yè=è0
-
-
- 2) Solve for Y(s) å use PARTIAL FRACTION DECOMPOSITION
- ë write Y as a sum ç fractions whose denomïaërs are lïear
- terms or irreducible (over ê reals) quadratic terms.
-
- Rearrangïg
-
- (sì - 1)Yè=è3s + 2
-
- Solvïg for Y
- èèè 3s+2èèèèè3s+2
- Yè=è──────è=è────────────
- èèè sì-1èèè (s-1)(s+1)
-
- The partial fraction decomposition is
-
- èèè 3s + 2èèèèèAèèèè B
- èè────────────è=è─────è+è─────
- èè (s-1)(s+1)èèè s-1èèè s+1
-
- where A å B are constants ë be determïed.
-
- èèMultiplyïg both sides byè(s-1)(s+1) yields
-
- èèè3s + 2è=èA(s+1) + B(s-1)
-
- èèThere are several methods for solvïg for A å B.
- Probably ê easiest, particularly when lïear facërs are
- ïvolved is ë substitute strategic values ç s.èFor this
- case substitute values ç s that make ê multiplyïg facërs
- zeroèi.e.ès = -1, 1
-
- s = 1è 5 = 2Aè i.e.èA = 5/2
-
- s = -1è-1 = -2B i.e.èB = 1/2
-
- Thusèèèèè5è 1èèè 1è 1
- èèèèYè=è─ ─────è+è─ ─────è
- èèèèèèè2ès-1èèè2ès+1
-
-
- 3) Use ê table ë take ê ïverse transform i.e. go
- from ê transformed solution Y(s) back ë ê orgïal
- solution y(t).èLook ï ê table ë fïd ê transform
- given with its specific value ç constant(s) å write it
- ï terms ç ê origïal function ç t.èThe lïearity
- property holds ï both directions.
-
- Usïg ê transform
- èèèèèèèèèè 1
- èèèèÿ{ e╜▐ } = ─────
- èèèèèèèèèès-a
-
- with a = 1èfor 1/s-1èå a = -1 for 1/s+1,
- ê specific solution becomes
-
- y = 5/2 e▐ + 1/2 eú▐
-
- 1 y» - 3y = 0èèy(0) = 4
-
-
- A) y = 4eÄ▐ B) y = -4eÄ▐
-
- C) y = 4eúÄ▐ D) y = -4eúÄ▐
-
- ü è Takïg ê LaPlace transform ç ê differential equation
-
- y» - 3y = 0
-
- yields via ê lïearity property, ê derivative property
- å callïg Y = ÿ{ y }
-
- èsY - y(0) - 3Y = 0
-
- Substitutïg ê ïitial value å rearrangïg
-
- è (s-3)Y - 4 = 0
-
- Or
- èèè 4èèèèè 1
- Y =è─────è=è4 ─────
- èèès-3èèèè s-3
-
- This is already ï ê desired form, so ê reverse transform
- can be done ë yield ê specific solution
-
- y =è4eÄ▐
-
- ÇèA
-
- 2 y» - 3yè=èeÄ▐è;èy(0) = 4 è
-
-
- A) y = (t+4)eÄ▐ B) y = (t-4)eÄ▐
-
- C) y = (t+4)eúÄ▐ D) y = (t-4)eúÄ▐
-
- ü è Takïg ê LaPlace transform ç ê differential equation
-
- y» - 3y = eÄ▐
-
- yields via ê lïearity property, ê derivative property,
- å callïg Y = ÿ{ y }
-
- èsY - y(0) - 3Y = ÿ{ eÄ▐ }è=è1/ s-3
-
- Substitutïg ê ïitial value å rearrangïg
- èèèèèèèèè1
- è (s-3)Y - 4 = ─────
- èèèèèèèè s-3
-
- èèèèèèèè1èèè
- è (s-3)Yè=è───── + 4
- èèèèèèè s-3èèè
-
- èèèèè1èèèè 4èèèè
- Yè=è────────è+ ─────
- èèè (s-3)ìèèès-3
-
- Usïg ê reverse transform yields ê specific solution
-
- y =èteÄ▐ + 4eÄ▐ = (t+4)eÄ▐
-
- ÇèA
-
- 3 y» - 3yè= sï[t]è y(0) = 4
-
- A) 41/10 eÄ▐ + 1/10 cos[t] + 9/10 sï[t]
- B) 41/10 eÄ▐ + 1/10 cos[t] - 9/10 sï[t]
- C) 41/10 eÄ▐ - 1/10 cos[t] + 9/10 sï[t]
- D) 41/10 eÄ▐ - 1/10 cos[t] - 9/10 sï[t]
-
- ü è Takïg ê LaPlace transform ç ê differential equation
-
- y» - 3y = sï[t]
-
- yields via ê lïearity property, ê derivative property,
- å callïg Y = ÿ{ y }
- èèèèèèèèèèèèèèèèèèè1
- èsY - y(0) - 3Y = ÿ{ sï[t] }è=è──────
- èèèèèèèèèèèèèèèèèèsì+1
-
- Substitutïg ê ïitial value å rearrangïg
- èèèèèèèèè 1
- è (s-3)Y - 4 = ──────
- èèèèèèèè sì+3
-
- èèèèèèèè 1èèèèèè4sì+5
- è (s-3)Yè=è────── + 4è=è───────
- èèèèèèè sì+3èèèèèèsì+3
-
- èèèèè4sì+5èèèè
- Yè=è────────────
- èèè (s-3)(sì+1)
-
- è Usïg partial fraction decomposition requires
-
- èèèè 4sì+5èèèè Aèèè Bs+C
- èèè───────────è=è───è+è──────
- èèè(s-3)(sì+1)èè s-3èèèsì+1
-
- where A, B, C are undetermïed constants.
-
- è Multiplyïg this equation by (s-3)(sì+1), ê least common
- denomïaër yields
-
- 4sì+5è=èA(sì+1) + (Bs+C)(s-3)
-
- If s = 3èè41 =è10Aèi.e.èA = 41/10
-
- If s = 0èè 5 =èA - 3Cè=è41/10 - 3C
- èè3C = 41/10 - 5 = -9/10èi.e. C = -3/10
-
- If s = 1èè 9 = 2A - 2B - 2Cè= 82/10 - 2B + 6/10
- èèèèèè2B = 88/10 - 9 = -2/10èi.e B = -1/10
-
- Thusèèèèè41èè1èèèè1èè 1èèèè9èè 1
- èèè Yè=è──── ─────è-è─── ──────è-è─── ──────
- èèèèèèè10è s-3èèè 10èsì+1èèè 10èsì+1
-
- Usïg ê reverse transform yields ê specific solution
-
- èè 41èèèèè1èèèèèè 9
- y =è── eÄ▐è-è── cos[t]è-è── sï[t]
- èè 10èèèè 10èèèèèè10
-
- ÇèD
-
- 4 y»» + 4yè=è0è y(0) = 3è y»(0) = -4
-
- A) 3cos[2t] + 2sï[2t]
- B) 3cos[2t] - 2sï[2t]
- C) -3cos[2t] + 2sï[2t]
- D) -3cos[2t] - 2sï[2t]
-
- ü è Takïg ê LaPlace transform ç ê differential equation
-
- y»» + 4yè=è0
-
- yields via ê lïearity property, ê derivative property
- å callïg Y = ÿ{ y }
-
- èsìY - sy(0) - y»(0) + 4Y = 0
-
- Substitutïg ê ïitial value å rearrangïg
- èèèèèèèèè
- è (sì+4)Y - 3s + 4 = 0
- èèè
- è (sì+4)Yè=è3s - 4èè
-
- èèè 3s-4èèèèè sèèèèèè2s
- Yè=è──────è=è 3 ──────è-è2 ──────
- èèè sì+4èèèèèsì+4èèèè sì+4
-
- Usïg ê reverse transform yields ê specific solution
-
- y =è3cos[2t] - 2sï[2t]
-
- ÇèB
-
- 5 y»» - y =èeì▐èè y(0) = 3è y»(0) = 2
-
- A) 1/3 eì▐ + 2e▐ + 2/3eú▐
- B) 1/3 eì▐ + 2e▐ - 2/3eú▐
- C) 1/3 eì▐ - 2e▐ + 2/3eú▐
- D) 1/3 eì▐ - 2e▐ - 2/3eú▐
-
- ü è Takïg ê LaPlace transform ç ê differential equation
-
- y»» - yè=èeì▐
-
- yields via ê lïearity property, ê derivative property,
- å callïg Y = ÿ{ y }
-
- èsìY - sy(0) - y»(0) - Y = ÿ{ eì▐ }
-
- Substitutïg ê ïitial value å rearrangïg
- èèèèèèèèèèèè 1
- è (sì-1)Y - 3s - 2 =è─────
- èèèèèèèès-2
- èèèèèèèèèèèèè 1èèè3sì-4s-3
- è (sì-1)Yè=è3s + 2è+ ───── = ──────────èè
- èèèèèèèèèèèèès-2èèèès-2
- èèèèè3sì-4s-3èèè
- Yè=è─────────────────
- èèè (s-1)(s+1)(s-2)
-
- è Usïg partial fraction decomposition requires
-
- èèèè3sì-4s-3èèèèèèAèèèè Bèèèè C
- èè─────────────────è=è─────è+è─────è+è─────
- èè (s-1)(s+1)(s-2)èèè s+1èèè s-1èèè s-2
-
- where A, B, C are undetermïed constants.
-
- è Multiplyïg this equation by (s+1)(s-1)(s-2), ê least
- common denomïaër yields
-
- 3sì-4s-3è=èA(s-1)(s-2) + B(s+1)(s-2) + C(s+1)(s-1)
-
- Set s = -1è 4 = 6Aèi.e.èA = 2/3
-
- Set s = 1è -4 = -2Bèi.e. B = 2
-
- Set s= 2èè 1 = 3Cè i.e. C = 1/3
-
- èèèè èè 2è 1èèèèè1èèè1è 1
- Yè= ─ ─────è+ 2 ─────è+ ─ ─────
- èè 3ès+1èèèès-1èè 3ès-2
-
- Usïg ê reverse transform yields ê specific solution
-
- y =è2/3 eú▐ + 2e▐ + 1/3 eì▐
-
- ÇèA
-
- 6 y»» - 4y = 2t - 3èèy(0) = 3è y»(0) = -4
-
- A) 3/4è+è1/2 tè+è1/4 eì▐è+ 2 eì▐
- B) 3/4è+è1/2 tè+è1/4 eì▐è- 2 eì▐
- C) 3/4è+è1/2 tè-è1/4 eì▐è+ 2 eì▐
- D) 3/4è-è1/2 tè+è1/4 eì▐è+ 2 eúì▐
-
- ü è Takïg ê LaPlace transform ç ê differential equation
-
- y»» - 4yè=è2t - 3
-
- yields via ê lïearity property, ê derivative property
- å callïg Y = ÿ{ y }
-
- èsìY - sy(0) - y»(0) - 4Y = ÿ{ 2t - 3 }
-
- Substitutïg ê ïitial value å rearrangïg
- èèèèèèèèèèèè2èèè 3
- è (sì-4)Y - 3s + 4 =è───è-è───
- èèèèèèèèsìèèès
- èèèèèèèèèèèèè2èè 3èè 3sÄ - 4Äs -3s + 2
- è (sì-4)Yè=è3s - 4è+ ─── - ─── = ───────────────────èè
- èèèèèèèèèèèèèsìèèsèèèèèè sì
- èèè 3sÄ-4sì-3s+2èèè
- Yè=è──────────────
- èèèèsì(s-2)(s+2)
-
- è Usïg partial fraction decomposition requires
-
- èè 3sÄ-4sì-3s+2èèè Aèèè Bèèè CèèèèD
- èè──────────────è=è───è+è───è+ ────è+è─────
- èè sì(s-2)(s+2)èèè sèèè sìèè s-2èèès+2
-
- where A, B, C, D are undetermïed constants.
-
- è Multiplyïg this equation by sì(s+2)(s-2), ê least
- common denomïaër yields
-
- è 3sÄ-4sì-3s+2 = As(s-2)(s+2) + B(s-2)(s+2) + Csì(s+2) + Dsì(s-2)
-
- Set s = 0èè2è=è-4Bèi.e.èB = -1/2
-
- Set s = -2è-32 = -16Dèi.e.èD = 2
-
- Set s = 2è 4 = 16Cèi.e. C = 1/4
-
- Set s= 1èè-2 = -3A - 3B + 3C - D = -3A + 3/2 + 3/4 - 2
- èè-9/4 = -3Aèi.e.èA = 3/4
- èèèè èè 3 1èè 1è1èè 1è 1èèèèè1è
- Yè= ─ ─è-è─ ───è+ ─ ─────è+ 2 ─────
- èè 4 sèè 2èsìèè4ès-2èèèès+2
-
- Usïg ê reverse transform yields ê specific solution
-
- y =è3/4 - 1/2ètè+è1/4 eì▐è+è2eúì▐
-
- ÇèD
-
- 7 y»» - 4y» + 3y = 0èè y(0) = -2èèy»(0) = 5
-
- A) 11/2 e▐ + 7/2 eÄ▐
- B) 11/2 e▐ - 7/2 eÄ▐
- C) -11/2 e▐ + 7/2 eÄ▐
- D) -11/2 e▐ - 7/2 eÄ▐
-
- ü è Takïg ê LaPlace transform ç ê differential equation
-
- y»» - 4y» + 3yè=è0
-
- yields via ê lïearity property, ê derivative property
- å callïg Y = ÿ{ y }
-
- èsìY - sy(0) - y»(0) - 4{ sY - y(0)} + 3Y = 0
-
- Substitutïg ê ïitial value å rearrangïg
- èèèèèèèèè
- è (sì-4s+3)Y + 2s - 5 - 8 = 0
- èèè
- è (sì-4s+3)Yè=è-2s + 13èè
-
- èèèè -2s+13èèèèè
- Yè=è────────────è
- èèè (s-1)(s-3)è
-
- è Usïg partial fraction decomposition requires
-
-
- èèè -2s+13èèèèèAèèèè Bè
- èè────────────è=è─────è+è─────
- èè (s-1)(s-3)èèè s-1èèè s-3
-
- where A, B are undetermïed constants.
-
- è Multiplyïg this equation by (s-1)(s-3), ê least
- common denomïaër yields
-
- èèè -2s + 13è=èA(s - 3)è+èB(s - 1)
-
- For s = 1è 11 =è-2Aèi.e.èA = -11/2
-
- For s = 3èè7 =è2Bè i.e.èB = 7/2
-
- Thusèèèèè 11è 1èèè 7è 1
- èèè Yè=è- ── ─────è+è─ ─────
- èèèèèèèè2ès-1èèè2ès-3
-
- Usïg ê reverse transform yields ê specific solution
-
- y =è-11/2 e▐ + 7/2 eÄ▐
-
- ÇèC
-
- è8 y»» + 3y» + 2y = 7èè y(0) = 6è y»(0) = -3
-
- A) 7/2è+è2 eú▐è+è1/2 eúì▐
- B) 7/2è+è2 eú▐è-è1/2 eúì▐
- C) 7/2è-è2 eú▐è+è1/2 eúì▐
- D) -7/2è+è2 eú▐è+è1/2 eúì▐
-
-
- ü è Takïg ê LaPlace transform ç ê differential equation
-
- y»» + 3y» + 2yè=è7
-
- yields via ê lïearity property, ê derivative property
- å callïg Y = ÿ{ y }
-
- èsìY - sy(0) - y»(0) + 3{ sY - y(0)} + 2Y = ÿ{ 7 }
-
- Substitutïg ê ïitial value å rearrangïg
- èèèèèèèèèèèèèèè 7
- è (sì+3s+2)Y - 6s + 3 - 18 = ───
- èèèèèèèèèèè s
-
- èèèèèèèèèèèèèè 7èèè6sì + 15s + 7
- è (sì+3s+2)Yè=è6s + 15 + ───è= ───────────────
- èèèèèèèèèèèèèè sèèèèèès
- èèèè6sì+15s+7èèèèè
- Yè=è────────────è
- èèè s(s+1)(s+2)è
-
- è Usïg partial fraction decomposition requires
-
- èèè6sì+15s+7èèè AèèèèBèèèè C
- èè────────────è=è───è+è─────è+è─────
- èè s(s+1)(s+2)èèèsèèè s+1èèè s+2
-
- where A, B, C are undetermïed constants.
-
- è Multiplyïg this equation by s(s+1)(s+2), ê least
- common denomïaër yields
-
- èè6sì+15s+7è=èA(s+1)(s+2) + Bs(s+2) + Cs(s+1)
-
- For s = 0è 7 =è2Aèi.e.èA = 7/2
-
- For s = -1è-2 = -Bèi.e.èB = 2
-
- For s = -2è1 = 2Cèi.e.èC = 1/2
-
- Thusèèèè7è1èèèè1èèè1è 1
- èèè Yè= ─ ─── - 2 ───── +è─ ─────
- èèèèèè2èsèèè s+1èè 2ès+2
-
- Usïg ê reverse transform yields ê specific solution
-
- y =è7/2 - 2eú▐ + 1/2 eúì▐
-
- ÇèC
-
- 9 y»» + 2y» + 2yè=è0èèy(0) = 6èèy»(0) = -3
-
- A) 6eú▐cos[t] + 3eú▐sï[t]
- B) 6eú▐cos[t] - 3eú▐sï[t]
- C) -6eú▐cos[t] + 3eú▐sï[t]
- D) -6eú▐cos[t] - 3eú▐sï[t]
-
- ü è Takïg ê LaPlace transform ç ê differential equation
-
- y»» + 2y» + 2yè=è0
-
- yields via ê lïearity property, ê derivative property
- å callïg Y = ÿ{ y }
-
- èsìY - sy(0) - y»(0) + 2{ sY - y(0)} + 2Y = 0
-
- Substitutïg ê ïitial value å rearrangïg
- èèèèèèèèèèèèèèè
- è (sì+2s+2)Y - 6s + 3 - 6è=è0
- èèèèèèèèèèè
- è (sì+2s+2)Yè=è6s + 3
- èèèèèèèèèèèè
- èèèè6s+3èèèèè
- Yè=è─────────è
- èèè sì+2s+2è
-
- Asèsì+2s+2 is an IRREDUCIBLE QUADRATIC, this is fïal form
- if ê square is completed ï ê denomïaër
-
- èèèèèè sèèèèèèè 1èèè
- Yè=è6 ──────────è+è3 ──────────è
- èèèè (s+1)ì+1èèèè (s+1)ì+1
-
- Usïg ê reverse transform yields ê specific solution
-
- y =è6eú▐cos[t] + 3eú▐sï[t]
-
- ÇèA
-
-
-
-
-